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Abstract. This document describes Scytl’s Swiss electronic voting pro-
tocol, which is used in the Swiss Post Online Voting platform. The do-
cument first presents the protocol at a high level and with a generic set
of participants, providing a syntax and a formal description that can
be useful for other return code-based voting protocols, as well as for
performing a formal analysis of the security of such schemes. The docu-
ment provides details on the implementation and usability layers, finally
providing an informal security analysis focused on the cast-as-intended
verification mechanism.
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1 Introduction

Switzerland has a long history on direct participation of its citizens in decision
making processes. Besides traditional elections where voters choose their rep-
resentatives in the Federal Assembly, citizens can participate in several other
voting events. Citizens can propose popular voting initiatives on their own (af-
ter having obtained enough popular support by collecting signatures), and then
parties and governments themselves (at the communal, cantonal or federal level)
can organize referendums in order to ask the citizens for their opinion on a new
law or a modification of the Constitution, among others. At the end, Swiss citi-
zens have the chance to participate in 3-4 voting processes a year in average.
Remote electronic voting was first introduced in Switzerland in three cantons:
Geneva, Zurich and Neuchétel [16]. The first binding trials were held in 2004.
Nowadays 14 cantons offer the electronic voting channel to their electors, which
until recently has been restricted to be used by up to 10% of the eligible voters.
In 2011 the Federal Council of Switzerland started a task force for studying the
security issues of electronic voting. As a result, the Federal Council published,
in 2013, a report with the requirements for extending the use of the electronic
voting systems to a larger part of the electorate. This framework [12], which
became binding in January 2014, provides requirements of functionality, security,
verifiability and testing/certification which allow the electronic voting systems
to be extended to 30%, 50% or up to 100% of the electorate. More specifically,
while current electronic voting systems may be allowed to be used for up to 30%
of the electorate provided that they fulfil a certain set of functional and security
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requirements, systems to be used for up to 100% of the electorate are required to
additionally provide verifiability features. Although the modality of electronic
voting (DRE, remote, ...) is not specified in the report, it refers to electronic
voting systems where the vote is cast electronically. In this paper, we will talk
specifically of remote electronic voting systems.

Verifiability in remote electronic voting is traditionally divided in three types,
which are related to the phase of the voting process which is verified [5]. The first
step to audit is the vote preparation at the voting client application run in the
voter’s device. This application is usually in charge of encrypting the selections
made by the voter prior to casting them to a remote server so that their secrecy
is ensured. Cast-as-intended verification methods provide the voters with means
to audit that the vote prepared and encrypted by the voting client application
contains what they selected, and that no changes have been performed. Recorded-
as-cast verification methods provide voters with mechanisms to ensure that, once
cast, their votes have been correctly received and stored at the remote voting
server. Finally, counted-as-recorded verification allows voters, auditors and third
party observers to check that the result of the tally corresponds to the votes
which were received and stored at the remote voting server during the voting
phase.

According to the report by the Federal Council, systems to be used for up to
the 50% of electors are required to provide methods for cast-as-intended verifi-
cation, and systems for up to 100% of the electorate are required to additionally
provide methods for recorded-as-cast and counted-as-recorded verification, while
also enforcing the separation of duties on operations impacting the privacy, in-
tegrity and verifiability of the system.

Our contribution. In this paper we present a protocol which provides cast-
as-intended verification, according to the requirements of the Federal Council
for systems to be used by up to 50% of the electorate. The protocol has the
particularity of only allowing voters to cast one vote through the electronic
channel, and therefore gives provisions for ensuring that such vote is considered
to be cast only in case that it represents the voter intention, by means of a
confirmation phase executed by the voter. The protocol is an evolution of the
so-called Norwegian voting protocol [17,/18L24] that was used in the Norwegian
elections in 2011 and 2013. Importantly, it substantially improves the Norwegian
scheme by not needing to rely on the strong assumption that two independent
server-side entities do not collude to preserve voter privacy. Furthermore, the
scheme also represents a great performance improvement of the voting client
application compared with the original Puiggali-Guasch scheme [6], from which
the Norwegian scheme was initially derived.

The paper is structured as follows: the related work and the main contri-
butions are detailed in Section [2] The syntax and a formal description of the
solution are provided in Section [3] The building blocks and the instantiation of
the protocol implemented for the Swiss Post Online Voting platform are pre-
sented in Sections [f] and [5} Then, some details on the usability and verifiability
aspects are provided in Section [0} Finally, an informal analysis on the security
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aspects of the protocol is provided in Section [7] and the conclusions are shown
in Section

2 Related work

There have been several proposals of cast-as-intended verification schemes dur-
ing the last decade. In |10], Benaloh presents the Immediate decryption scheme,
where the voter’s device encrypts a vote and the voter is allowed to challenge
the encryption generated. In case they choose to challenge it, the device reveals
the randomness which was used to perform the encryption of the voting options.
Using this randomness, the voter can check that the encrypted vote was con-
structed correctly. After the audit, the voting options are encrypted again with
fresh randomness prior to casting the vote, so that the voter cannot use the
randomness provided for audit as a proof to a third party of how they voted.
However, this approach presents several drawbacks, such as usability (this ran-
domness is a rather large string, cumbersome to be typed by a voter), and the
fact that it does not allow for simple verification (i.e. verification must be done
using a secondary computing device, under the assumption that at least one of
the two devices is not compromised). This approach is used by the Helios vo-
ting system [2H4] and in the Wombat system [25]. A similar approach is used
in VoteBox [26], by disclosing audited votes in the poll station local network in
order to allow them to be verified.

A different approach consists on using the so-called return codes, which are
targeted against malicious voting clients while enjoying some degree of usabil-
ity [6L{17,[20/21L/24]. In these proposals the voter selects their voting options and
the voting client sends an encrypted vote to the remote voting servers, where re-
turn codes are calculated from the encrypted vote and sent back to the voter for
verification. Voters possess a verification card where return codes (pre-computed
in a configuration phase) are shown against matching voting options, and veri-
fication can be made by rather simple visual inspection. The current proposals
assume that the voter can cast multiple votes. If the return codes do not match
the selected voting options, then voters can cast another vote that invalidates the
previous one (typically, this would happen if the voting client is malicious and
encrypts voting options independently of the voter). However, some countries do
not allow voters to cast multiple votes (such as France or Switzerland [12/23]), so
it is important to provide a proposal for these cases. Still, multiple voting is also
used as a countermeasure for vote selling and voter coercion in such schemes, so
they have to be taken into account when single voting is use(ﬂ

One possible solution to support single vote casting is to add a confirmation
phase to validate the vote after checking the return codes. In the first phase, the
vote is encrypted and sent to the voting server, which calculates the return codes,
stores the vote and communicates the return codes to the voter. In the second
phase, the voter, after inspection of the return codes, sends a confirmation code

! For example, the risk of voter coercion or vote selling in Switzerland is assumed to
be affordable given the fact that many voters already use the postal channel.
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to the voting server, that stores it together with the ballot as a proof that the
vote has been confirmed by the voter. Only votes with a valid voter confirmation
code will be taken into account during the tally phase.

The return codes are computed from the probabilistic encryption of voting
options, but at the same time they have to be deterministic: during the voting
phase, the values computed by the server-side from an encrypted vote have to
match those computed during the verification card generation phase (which hap-
pens at election configuration time) for the same set of voting options. Therefore,
the randomness from the voting options encryption has to be removed for com-
puting the return codes, which poses a serious risk on the vote secrecy. This
was solved in the Norwegian voting system [17,/18,[24] by splitting the gener-
ation of the return codes in two independent entities: a ballot box server and
a code generation server, which were assumed not to collude. To prevent these
components from colluding and compromising the election privacy [17,{18], both
components were located in independent locations and managed by different
companies. However, this approach is not always feasible to implement (the
economic and organizational cost of setting up two different and independent
environments are high).

In contrast, in the Puiggali-Guasch [6] scheme one of the previous indepen-
dent entities is embedded in the voting client application. In their proposal there
is no need of two separate components at the server-side of the voting platform,
although then vote casting becomes computationally more expensive for the vo-
ting client (2,5 times more exponentiations than in the Norwegian protocol are
required approximately). This is important considering the fact that the cryp-
tographic operations done at the voting application level are often performed
using web technologies such as Java Applets or Javascript, so the performance
is slowed down when compared to a C/assembly implementation that uses lower
level instructions. Naturally, ballot construction and casting needs to be executed
in an acceptable time-frame to prevent voter disenfranchisement.

In this paper, we present a modification of the protocol [24] which, while
very similar to [6] in the sense that it moves the operations of one of the server-
side entities to the voting client application, reduces dramatically the number of
operations to be performed at the voting client application (as it will be shown
in Section [} the cost of encryption and of proofs computation does not depend
on the number of options anymore). Moreover, we add a confirmation phase in
order to support single vote casting, so that it fulfils the requirements of the
Swiss Federal Council [12].

3 Single voting with return codes

We start by presenting a syntax for a voting scheme with return codes, which
will be later used to describe the protocoﬂ We build on existing definitions of

2 As usual, the terms “scheme” and “protocol” can be read interchangeably without
much loss of precision.
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single-pass voting schemes, such as [11], and enrich them by adding a second
interaction of the voter with the system, in order to confirm a cast vote.

3.1 Syntax

The scheme has the following participants: Election Authorities, who are in
charge of setting up the election, computing the tally and publishing the re-
sults; Voters, who participate in the election by choosing their preferred options;
Registrars, who are responsible for providing to the voters all the information
they need to vote and, in particular, the return codes that provide the cast-
as-intended integrity property; the Voting Server, which receives, processes and
stores the ballots cast by eligible voters in the Ballot Box, and may as well pub-
lish some information; the Voting Device, which is in charge of casting a ballot
given the voting options selected by the voter; the Code Generator, which is in
charge of generating return codes from the ballots cast by the voting device. Fi-
nally, Auditors, who are responsible for verifying the integrity of the procedures
run in the counting phase.

We assume that non-cryptographic election specifications such as the sets of
administrators and voter identities are fixed in advance. Furthermore we assume
a counting function p : (V U {L})™ — R is given, where Vs is the set of voting
options, | denotes abstention, n is the number of voters and R is the set of
results. Voters may use credentials in order to be able to cast their ballots.
However, how the voters obtain and use such credentials is out of the scope of
this presentation.

There exists a public bulletin board PBB to which every algorithm in the
voting scheme has read-only access to. As is common in the literature, some
authorized parties have writing append-only access to it.

The voting scheme is characterized by the following protocols/algorithms:

— Setup(1?) is an interactive protocol run by the election authorities. On input
a security parameter 1, it generates and outputs an election public key
pke and an election private key sk.. In addition, it generates a global code
generation public/private key pair (pke, sk.), a signing public/private key
pair (pks, sks), and the set of values which will represent the voting options:
V = {v1,...,v;}. The public keys pk., pk. and pks, and the set of voting
options V, are implicit inputs to the remaining algorithms.

— Register(id, sk, sks) is an interactive protocol run by the registrars. It takes
as input a voter identity id, the global code generation private key sk,
and the signing private key sks. It outputs a voter’s code generation pub-
lic/private key pair (pkiq, skiq), a set of voter return codes linked to voting
options {v;,RC}¥}%E_  a voter confirmation value CVi?, a voter finalization
value FC? and a validity proof for such finalization code, IIggia. Additionally,
the registrars publish a set of reference values {RF1¢}% | that are linked to
the codes {RC}4}¥_| . We sometimes refer to the set {{v;, RC}}F_,, cvid Fcid}
as the Verification Card.
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— Vote(id, skiq, {vj,,...,vj,}) is a probabilistic algorithm run at the voting
device. It receives as input a set of values {v;,,...,v;,}, the voter identifier
id € ID and the voter’s code generation private key skiq; outputs a ballot b.

— ProcessBallot(BB, b, id, pkiq) is run by the voting server. It receives as input a
ballot box BB, a ballot b, an identity id and a voter’s code generation public
key pkiq. It outputs 1 in case of success, 0 otherwise.

— RCGen(b, id, sk.) is an algorithm run by the code generator. On input a
ballot b, the voter identifier id and the global code generation private key
ske, it outputs an (unordered) set of return codes {RC'?} if the operation is
successful, or L in case of error/rejection. Typically this algorithm will look-
up at PBB to check the list of legitimate reference values {{RFid}le}i dem’

— RCVerif({vj,, ..., v;}, {RC*}, {v;,RCI¥}E ) is an algorithm run by the voter.

On input a set of voting options {vj,,...,v;,}, a set of return codes {RC*}
and a voting card {v;,RC}*}}_, it outputs 1 if {RCI*}!_, = {RC*?} as sets, 0
otherwise.

— Confirm(CV*¢,id, skiq) is a simple algorithm run by the voting device. On
input a voter confirmation value CVi¢, the voter identity id, and the voter
code generation private key sk;q, it outputs a confirmation message CM*<.

— FCGen(CM, id, sk, ITgcie) is an algorithm run by the code generator. It re-
ceives as input a confirmation message CM¢, a voter identity id, the global
code generation private key sk. and the proof Ifgcia. It outputs a finalization
code FC* if the operation is successful, or | in case of error/rejection.

— Tally(BB, ske, { IIrcie }iae1p) is an interactive protocol run by the election au-
thorities. It takes as input the ballot box BB, the election private key sk, and
the set of validity proofs {Ilci }iactp. It outputs a result » € R and a proof
7 of the tally correctness, or 1.

— Verify(PBB,BB) is an interactive protocol run by the auditors/election ob-
servers. It takes as input the bulletin board PBB and the ballot box BB. The
output is 1 if their verification of the counting process succeeds, 0 otherwise.

3.2 Workflow

Configuration phase: Election authorities define the set ID of voter identities
participating in the election and run the Setup algorithm. They publish the
election public key pk., the global code generation public key pk., the set of
voter identities ID, the signing public key pk, and the set of voting options V' in
the bulletin board. They provide the global code generation private key sk. to
both the registrars and the code generator. Finally the signing private key sk;
is provided to the registrars.

Registration phase: Voters register to participate in the election. To register, a
voter first provides their identity id € ID to the registrars, who run the Register
algorithm. The outputs (pkia, skia), {vi,RC}}E |, CVi4, and FC'¢ are provided
to the voter, while the voter’s code generation public key pkiq, the proof ITggia
and the reference values {RFi¢}%_| are published in the bulletin board PBB.
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Voting phase: This phase consists of several steps:

1. The voter authenticates through the voting device to the voting server. If
the authentication is successful, the values id, pkiq are stored in the voting
device. The voter chooses a set of voting options {v;,,...,v;,} € V and
enters them into the voting device as her choices for the election, together
with the private key sk:idlﬂ The voting device then runs the Vote protocol
and produces a ballot b. The ballot b and the voter identity id are sent to
the voting server.

2. Upon reception of (b, id), the voting server calls the ProcessBallot algorithm.
In case the result of the execution is 1, the ballot box BB is updated with the
ballot b and the voter identity id, with the state ballot received. Otherwise,
the voting device is notified of the error.

3. The code generator is notified of the new update in BB and executes the
RCGen algorithm with the newly arrived ballot. In case the operation is suc-
cessful, a set of return codes {RC*?} is generated and sent to the voting server,
which updates the status of the ballot in the BB to return code generated, and
forwards the return codes to the voting device. In case the operation is not
successful the voting device is notified accordingly. L

4. The voting device shows the voter the set of generated return codes {RC?}.
The voter is then asked to confirm the ballot cast by providing the confir-
mation value CVi¢ to the voting device, which they will do only in case the
RCVerif algorithm accepts. The voting device then runs Confirm and outputs
a confirmation message CM¢, which is sent to the voting server together with
the voter identity id.

5. The voting server forwards the confirmation message CM*® to the code gen-
erator, which executes the FCGen algorithm. If the operation is successful,
the resulting finalization code FCi?¢ is sent back to the voting sever, which
stores it together with the ballot, updates the ballot status to confirmed and
forwards FC to the voting device. In case the operation is not successful,
the voter is notified accordingly. L

6. Finally, the voter checks whether the displayed finalization code FC*¢ matches
the value FC¢ received during registration. In case of a successful verification,
the received finalization code serves the voter as a confirmation of the correct
submission and confirmation of their vote. Otherwise, they complain to the
election administrators, and might need to cast their vote using a different
channel (i.e. at a polling station).

Counting phase: The election authorities run the interactive protocol Tally on
BB, obtaining and publishing in the bulletin board the result r and the proof =,
or set r =L in case of error. The auditors run the Verify protocol. In case their
output is 1, the result r is announced to be fair. Otherwise, an investigation is
opened to detect the reason of failure.

3 How this key is provided to the voting device in the specific implementation is
explained in Section @
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3.3 Trust Assumptions

The following conditions are assumed in order to provide cast-as-intended veri-
fication and voter privacy with the proposed protocol:

For cast-as-intended verifiability, it is assumed that the following entities,
as pairs, are not simultaneously malicious: the voting device and (1) the code
generator, (2) the registrar, or (3) the voting server; (4) the code generator and
the registrar.

For privacy, the following conditions are necessary: (1) the voting device
is not compromised; (2) the election authorities are honest; (3) the verification
card contents are only known to the voter.

4 Building blocks

ENCRYPTION SCHEME. Our protocol uses the ElGamal asymmetric encryption
scheme [15], which consists of three algorithms: key generation, encryption and
decryption (KGen, Enc, Dec). The key generation algorithm KGen takes on input
a subgroup G which has a generator g of order ¢ of elements in Z;, where p is a
safe prime such that p = 2¢+ 1 and ¢ is a prime number. It outputs an ElGamal
public/secret key pair (pk, sk), where pk € G such that pk = ¢** mod p and
sk € Z4. On input m € G and the public key pk, the Enc algorithm chooses a
random r € Z, and computes (c1,c2) = (¢”, pk” -m). The Dec algorithm receives

(c1,c2) and the private key sk and outputs m = ca/ci".

VOTING OPTIONS. The voting options V' = {v1,...,v;} are chosen as small
bit-length primes belonging to the group G. A vote is encoded as the product
of voting options chosen by the voter (prior to encryption), and the individual
voting options are recovered via factorisation after decryption. Therefore, it has
to be ensured that the product of ¢ of such primes, where ¢ is the number of
selections a voter can make, is not larger than p.

PSEUDO-RANDOM FUNCTION FAMILY. A function family is a map F' : K x D —
R, where K is the set of keys, D is the domain and R is the range. A pseudo-
random function family (PRF) is a family of efficiently computable functions,
with the following property: a random instance of the family is computationally
indistinguishable from a random function, as long as the key remains secret. We
use the HMAC algorithm as a PRF [8], parametrized by the key K.

SIGNATURE SCHEME. A signature scheme is defined by three probabilistic al-
gorithms SignKeyGen, Sign, SignVerify, that stand for key generation, signature
generation and signature verification. Our protocol uses the RSA signature al-
gorithm with the hash variant (or RSA Full Domain Hash signature scheme
(RSA-FDH) [9]), therefore the key generation algorithm SignKeyGen outputs a
pair of keys (pks, sks), for which pks = {pkrsa, Nrsa}, Nrsa = p- ¢ where p and ¢
are two distinct primes, and sks = sk;s,. The signature algorithm Sign takes as
input a message m, which is not restricted to a specific space, and the private
key sks, and outputs o = H(m)Sk“a mod Niga, where H denotes a hash func-
tion. The signature verification algorithm SignVerify takes as input the public
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key pks, the message m and the signature o, and checks that H(m) = gPkra
mod Nyg,. It outputs 1 if successful, 0 otherwise.

NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE. We use

EqDLG(gla'-'7gn7h17"'ahn)7

a generalization of the NIZK proof system [13], to prove in zero-knowledge that
log, h1 = log,, hy = ... = log, hy, for g1,...,gn,h1,...,hn € G (with proof
builder ProveEq and proof verifier VerifyEq); and the NIZK proof system [27]
PrDLg(g, h) to prove in zero-knowledge the knowledge of log, h for g,h € G
(with proof builder ProveDL and proof verifier VerifyDL). G is a hash function
mapping strings to Z.

We additionally use the DecP NIZKPK scheme for proving the correct de-
cryption of a ciphertext c¢. This proof is also based on the Chaum-Pedersen pro-
tocol [13], and a detailed description can be found in [14]. We denote the proving
algorithm as ProveDec, which receives a ciphertext ¢, a message m (which cor-
responds to the decryption of ¢), and a private key sk, and outputs a proof of
correct decryption 7ge.; the verification algorithm is denoted as VerifyDec, and
receives as input a ciphertext ¢, a message m (which corresponds to the decryp-
tion of ¢), and a proof of correct decryption 7g.., and outputs 1 in case the
validation is successful, 0 otherwise.

MIXNET. We model a verifiable mixnet with two algorithms: Mix shuffles and
transforms a set of input ciphertexts, and additionally generates proofs 7.
of correct mixing (shuffling and transformation). MixVerify takes as input the
ciphertexts which were the input of Mix, the output shuffled and transformed
ciphertexts, and the proof m,;, of correct mixing, and outputs 1 in case the ver-
ification is successful, 0 otherwise. In this implementation, we use the verifiable
mixnet proposed by Stephanie Bayer and Jens Groth [7]. This mixnet has been
proven by their authors to be sound, meaning that MixVerify will only output 1
given a correct execution of Mix, and zero-knowledge in the standard model, or
in the random oracle model in case of using the Fiat-Shamir heuristic for making
the proofs non-interactive.

5 A protocol for cast-as-intended verification with single
voting

The protocol implementation consists of the following algorithms:

— Setup(1*): the algorithm chooses a group G and runs KGen to generate an
encryption key pair (pk, sk). As discussed before, the voting options V =
{v1,...,v;} are chosen as small bit-length primes belonging to the group
G. The algorithm then generates a random K to choose a pseudorandom
function fx € F, and chooses hash functions H, G. The election public key
is pk. = (pk,G, H,G), and the election private key is sk., where sk, = sk
if there is only one trustee; alternatively sk, consists of the shares of sk if
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there are several trustees (for instance, by using [22]). Finally, the global
code generation key pair is set to pk. =1, sk, = K, and SignKeyGen is run
and the result is set to be the signing key pair (pks, sks)lﬂ

— Register(id, sk, sks): the algorithm runs KGen with input G to generate a

keypair (pk, sk) which is set to be the voter public/private code generatiorﬂ
key pair (pkiq, skia) € GXxZ,. Then it generates the voter confirmation value
CVi¢ by selecting a random element from G. For each voting option v; € V
it computes the corresponding return code RCH = fop. (v:%), and computes
the finalization value FC1¢ = f;._((CVi)skie), The validity proof for the final-
ization code IIggie is computed by running Sign(FC?, sk,). Finally, the set
of reference values {RF}4}%_ is generated by computing RFi¢ = H (RC}?) for
each return code.

— Vote(id, skiq, {vj,,-..,vj,}): the algorithm receives the voting options se-

4

ot

lected by the voter as input, sets v = Hle v;, and encrypts them, obtaining
(c1,¢2) = Enc(pk, v). The algorithm then makes a partial computation of the
return codes corresponding to such voting options using the voter private key
skia: (vjs-lki“, A vjs-f“)ﬁ Finally, it also computes (cikid7 cgk“). The following
NIZK proofs are computed to prove the correct computation of these values:

e A proof mepe < ProveDL(g, ¢1) , which proves knowledge of the random-

ness used for computing the encryption of v.

Two proofs to demonstrate that the voting options in the ciphertext (c1, ¢2)
and the voting options used to for the partial computation of return codes
are the same:

o A proof mey, ProveEq(g,0170271714::~Ld7cfki shia

4, ¢5*) which proves that
(¢5Me ¢3F9) are computed by raising the ciphertext (¢1, ¢2) to the voter’s
code generation private key skiq corresponding to the public key pkiq.

skia .skia . (U‘?kid USkid)—l) which

o A proof my.0q ¢ ProveEq (g,pk,c1 ,Ch AP T
proves that the ciphertext (c‘;k“, cgk“) is the encryption of the product

(vjfi" .. ~v;tk“) under the election public key pk..

The result of the above computations is a ballot b consisting of

. sk;, sk sk, sk,
b= (1d7 (Cla CQ)a (Uj 4 » Vs, d)a (Cl . Co d)apkid; Tency Texps 7Tp7‘od) .

Note that sk. is not considered to be divided in shares in this protocol. This is due

to the fact that the secrets for computing the return codes (sk. and skia) belong
to two different entities that are assumed not to collude for providing vote secrecy.
However, distributing sk. might be considered to weaken the trust assumptions.
Notice that this is formally an encryption key pair, but it is being used here differ-
ently.

As explained in Section |2 return codes have to be computed between two entities
which are assumed not to collude, in order to ensure vote secrecy. In this imple-
mentation, the voting device computes a partial computation in the Vote algorithm,
while the voting server computes the final values in the ProcessBallot algorithm.
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— ProcessBallot(BB, b): in the first place, the algorithm checks if there already
exists a ballot for the voter identity id in the ballot box BB; if this is the
case, it outputs 0. Otherwise, it continues by validating the NIZK proofs
Tene, Texp, Tprod- 10 case all the validations are successful, 1 is returned.

— RCGen(b, id, sk.): the algorithm computes the set of return codes contained
in ballot b as follows:

e Computes the final return code value RC}! = fq, (v;lk“) for each of the

partially computed return codes (v;flki", . ,v;tk“) from b.

e Checks that {RC}?, . ,RC;?} is a subset of {RF}4}¥_ . In a positive case,

the set of return codes {RC*} = {RCi-"1

R ,Rc;f} is output. In a negative

case, L is returned.

— Confirm(CVi, id, skiq): the algorithm computes CM? = (CVid)skia,

— FCGen(CM*, id, sk, ITgcia): Tuns SignVerify(pks, FC*, ITggia), where FC¢ =
fre(CM*). FC is returned if the signature verification is successful, L oth-
erwise.

— Tally(BB, ske, { Ircic }iqetp): it runs ProcessBallot for all the ballots in the
bulletin board which have a finalization code FC'¢ stored. Then for those
which passed the verification it runs SignVerify(pks, FC*%, ITpcie ), discarding
those for which this validation failed. Ciphertexts ¢ are extracted from the
remaining ballots and passed as input to the mixnet, which runs the Mix
algorithm. The resulting list of mixed ciphertexts {C,,} is decrypted: for
each ciphertext ¢, € {Cp,}, Dec(c, sk.) is run to obtain v, (in case sk, was
divided in shares, a secret reconstruction algorithm [22] is used to recover
the private key previous to decryption). Then the ProveDec algorithm is run
with inputs the statement (c,v,) and the witness sk.. The cleartext v, is
factorized to recover from v, = vj* v,f" the factors v; such that 3; = 1.
The small primes representing the voting options v; are tested to belong
to V. Otherwise, the whole factorized vote is discarded. Finally, the result r
composed of the values v; recovered from each vote is provided as the output,
together with the proof m which is composed by the proofs of correct mixing
and decryption: 7 = (Tmiz, {Cm }, Tdec)-

— Verify(PBB, BB) performs the same validations than Tally: runs ProcessBallot
for all the ballots in the ballot box which have a which have a finaliza-
tion code FC'¢ stored. Then for those which passed the verification it runs
SignVerify(pks, FC*, ITcia ), discarding those for which this validation is not
successful. It extracts the ciphertexts ¢ from the ballots which have passed
the previous validations and composes the list {C'}. Then it parses 7 as
(Tmizs {Cm}, Tdec) and verifies that the mixing was correct by running
MixVerify(C, Cy,, Tmiz)- Finally it checks that the decryption of each cipher-
text was correct by running VerifyDec from the NIZKPK scheme, using as
input the statement (c,, [[({v;})), for all the ciphertexts ¢, € {C,,} and the
proof m; € Tgee, where [[({v;}) denotes the product of all the voting options
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v; in the z-th entry of r (belonging to the same ballot). The output is the
result of these validations.

6 Usability layer

The protocol described in the previous sections may pose significant usability
problems to the voters. In order to cast a vote, the voter is asked to type in
the voting device a series of secret values from their voting card, such as the
confirmation value CM*¢ and the private key skiq. In order to confirm their vote,
the voter is asked to compare the return codes RC*¢ shown by the voting device
with those in their verification card. The same applies to the finalization code
FCi,

The problem is that, according to current cryptographic key length recom-
mendations |1, the aforementioned values have a length of 256 or 2048 bits,
depending on whether they are the output of a symmetric or an asymmetric key
cryptographic operation. To be more concrete, in case a Base32 encoding is used
to represent such values, this implies 52 and 410 characters, respectively. It is
clearly not realistic to ask a voter to perform such task.

Therefore, an additional layer for improving usability is required on top of
the protocol from Section [5] This layer allows to reduce the length of the values
in the verification card, and to provide the voter’s code generation key to the
voting device in a way that is transparent to the voter.

6.1 Private key provision

Details about the authentication layer have been deliberately omitted in pre-
vious sections, for the sake of clarity. Authentication consists on a username
and password which are derived using a password-based key derivation function
(PBKDF) from a secret value generated during registration and printed onto
the voter’s verification card. The authentication layer managed by the electronic
voting system is used not only to qualify a user as an authorized voter in the
election, but also to transparently provide her with some cryptographic secrets,
such as the voter’s code generation key pair (pkiq, skiq) in the following way:
the voting device sends the username (id in the protocol) to the voting server,
which checks that it is in the electoral roll (in the list ID in the protocol) and
then sends back to the voting device a keystore with the corresponding private
keys, together with a challenge. The voting device uses the password to open the
keystore and uses the private keys it recovers to answer the challenge. The server
then issues an authentication token which grants that the voter has successfully
passed this phase.

6.2 Short Return Codes

The usability layer is in charge of generating short values {sRC*¢}¥_, sFC? that
are printed in the verification card. One key ingredient of this layer is the length
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of such values, which actually represents a neat trade-off between usability and
security: the longer they are, the harder it is to guess them by a corrupted voting
device, but the harder is to use them by the voter. Specifically, in the Swiss Post
Online Voting platform they are of 4 and 8 numeric digits respectivelyﬂ

Additionally, the registrar secretly generates a table which relates each code
sRCI or sFC* to the corresponding long codes RC} or FC*. We call this table
the mapping table, and mapping to each one of the correspondences. During the
voting phase, the code generator uses this table to obtain the corresponding
short codes. The mapping table is designed to be an injective function from
codes {RC'4}%_ | FCi to short codes {sRCI4}F_  sFCid.

Our implementation of the mapping table contains one entry for each (long)
return code RCI? of the form: [H(RCi?), Egcia(sRCH)], where H denotes a hash
function, and F(m) denotes the encryptionlof the message m with a symmetric
encryption algorithnﬁ and a secret key k.

An additional entry is computed in the same way with the (long) finalization
code FC? and the short finalization code sFCHd,

7 (Informal) Security Analysis

The protocol is focused on preventing a corrupt voting client from changing
the voter intention without being detected, while maintaining the privacy of
such voter in front of a malicious voting server/code generator. In this section
we informally discuss how these security properties are fulfilled given the trust
assumptions presented in Section (3.3

7.1 Cast-as-Intended Verifiability

The voting device can try to modify the voter’s intention without detection in
two ways: (i) by showing to the voter return codes which do not correspond to
the maliciously modified contents of the vote (but that correspond with those
of the voter’s choices); (ii) by confirming a vote without the participation of the
voter.

For the first attack, the voting device could try to send a ballot where the
encrypted options do not correspond to the partial computation of return codes.
However, in that case the proofs meyp, Tproa Would not be successfully verified by
the voting server. The collaboration of the code generator is needed to generate
the return codes. However, the only way the code generator receives a ballot cast
by the voting device is that the voting server verifies the proofs first. Therefore,
the code generator and the voting device cannot collaborate in case of a honest
voting server and the only strategy the voting device can follow is to guess the

7 Since the voting device has only one chance to show the values to the voter, a brute
force attack succeeds with probability at most 10™*" in changing the value of ¢ voting
choices without detection.

8 The SHA-256 hash and the AES-128 symmetric encryption algorithms are used in
the current implementation.
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return codes the voter expects. A brute force attack cannot be done in this case,
since the voter will detect consecutive attempts of displaying wrong return codes.

A possibility for the second attack is that the voting device generates a fake
cofirmation message, so that the code generator computes a fake finalization
value. Even in case the code generator does not verify the proof of validity of
this finalization value (because it colludes with the voting device), the election
authorities or the auditors would detect that it is fake at the counting or audit
phases, so that the vote would not be counted. The alternative is that the voting
device guesses a valid confirmation message. In order to limit the possibility of
a brute force attack, the voting server allows a limited number of retries.

7.2 Privacy

Privacy in electronic voting is understood as the property of maintaining the
intention of a voter unknown. Besides recovering the voter selections or the
encryption randomness from the voting device (which we assume that cannot
happen because for privacy the voting device is assumed to be honest), there are
two ways to attack the voter privacy in this scheme.

The first one is to target the voting options encryption. This can be done
by brute forcing the encryption, by decrypting the votes without shuffling them
(so that they could be connected to the voter’s identities), or by recovering
the shuffling permutation. However, according to the assumptions previously
detailed and using a strong encryption algorithm, none of these attacks are
feasible.

The second attack is to target the return code generation mechanism. The
ballot cast by the voter includes some partial computations of the return codes,
which consist on the voter selections raised to some exponent known by the
voting device. As far as it does not reveal such secret exponent, neither the
voting server nor the code generator (even in coalition) can compute back the
voter’s original voting options (see [17] for the analysis). Given that the relation
between return codes and voting options is only known to the voter, neither the
voting server nor the code generator (or any third party who could have access to
them) can use the generated return codes to infer which are the choices selected
by the voter.

Finally, a voter cannot copy a vote of another voter and cast it as it was theirs,
so that they receive return codes matching those in their voting card. In order
to do that they need to compute the exponentiation the original selections to an
exponent they know (while not knowing the selections themselves). Otherwise,
they would get return codes that they would not be able to understand (because
they would belong to another verification card).

8 Conclusions

In this paper, we have presented the Swiss electronic voting protocol to be used
in the Swiss Post Online Voting platform, and specifically we have focused on
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the cast-as-intended verification in the case of single voting. This mechanism im-
proves on the performance and infrastructure requirements of previous proposals
using return codes. Besides a syntax (that could be useful to design other return
code-based voting protocols) and a formal description of the scheme, we have
provided various details on the implementation of this mechanism for the online
voting platform. These details include techniques applied to improve the usabil-
ity of the system without breaking vote privacy. Finally, an informal security
analysis has been provided.
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